

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ КТШЛ 2.320.202 РП

ТЕРМОДАТ-17Е6

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРА	4
2 ОСНОВНОЙ РЕЖИМ РАБОТЫ	7
2.1 ПРАВИЛА НАСТРОЙКИ ПРИБОРА	7
2.2 МЕНЮ БЫСТРОГО ДОСТУПА	8
2.3 КАК ВКЛЮЧИТЬ РЕГУЛИРОВАНИЕ	9
2.4 КАК СОЗДАТЬ ПРОГРАММУ РЕГУЛИРОВАНИЯ	10
3 НАСТРОЙКА ПРИБОРА	12
3.1 КОНФИГУРАЦИЯ	12
3.2 РЕГУЛИРОВАНИЕ	13
3.3 АВАРИЙНАЯ СИГНАЛИЗАЦИЯ	17
3.4 ИЗМЕРЕНИЕ	19
3.5 ТАЙМЕР	21
3.6 ДИСКРЕТНЫЙ ВХОД	22
3.7 АНАЛОГОВЫЙ ВЫХОД	23
3.8 ДАТА И ВРЕМЯ	24
3.9 АРХИВ	24
3.10 ГРАФИК	25
3.11 СЕТЕВЫЕ НАСТРОЙКИ ПРИБОРА	25
3.12 СИГНАЛИЗАЦИЯ ХОДА ПРОГРАММ РЕГУЛИРОВАНИЯ	26
3.13 РЕЖИМ РАБОТЫ УСТОЙСТВА	26
3.14 КОНФИГУРАЦИЯ ДОПЛНИТЕЛЬНОГО ВЫХОДА	26
3.15 ВОЗВРАТ К НАСТРОЙКАМ ПО УМОЛЧАНИЮ	27
3.16 УСТАНОВКА ЯЗЫКА МЕНЮ	27
3.17 КОНТРАСТ ЖКИ	27
3.18 ОГРАНИЧЕНИЕ ДОСТУПА К ПАРАМЕТРАМ НАСТРОЙКИ	27
4 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ПРИБОРА	28
4.1 МОНТАЖ ПРИБОРА	28
4.2 ПОДКЛЮЧЕНИЕ ДАТЧИКОВ ТЕМПЕРАТУРЫ	28
4.3 ПОДКЛЮЧЕНИЕ ИСПОЛНИТЕЛЬНЫХ УСТРОЙСТВ	29
4.4 ПОДКЛЮЧЕНИЕ ПРИБОРА	33
4.5 ПОДКЛЮЧЕНИЕ ПРИБОРА С БЛОКОМ АНАГОВЫХ ВЫХОДОВ	34
5 МЕРЫ БЕЗОПАСНОСТИ	35
6 УСЛОВИЯ ХРАНЕНИЯ, ТРАНСПОРТИРОВАНИЯ И УТИЛИЗАЦИИ	35
7 ГАБАРИТНЫЕ РАЗМЕРЫ ПРИБОРА	35
8 КОНТАКТНАЯ ИНФОРМАЦИЯ	36

ВВЕДЕНИЕ

Благодарим Вас за выбор регулятора температуры Термодат-17Е6.

Термодат-17E6 предназначен для измерения и регулирования температуры по нескольким каналам одновременно. Регулирование температуры осуществляется по программе - графику технологического процесса. Программа может содержать участки роста и снижения температуры с заданной скоростью, а также участки поддержания температуры в течение заданного времени. Запуск программ происходит из меню прибора или по нажатию кнопки, подключенной к дискретному входу.

В приборе реализовано несколько методов управления мощностью. Это пропорционально—интегрально-дифференциальный закон (ПИД) и двухпозиционный закон.

Термодат-17E6 имеет универсальные измерительные входы (по числу каналов), дискретный вход и несколько выходов (по числу каналов). Универсальные входы предназначены для подключения температурных датчиков: термопар, термометров сопротивления, токовых датчиков, пирометров. В зависимости от модели выходы могут быть: реле, транзисторные или симисторные. Также к некоторым моделям возможно подключить блок аналоговых выходов.

Прибор может управлять как нагревательными (например, ТЭН), так и охладительными (вентилятор, холодильник) устройствами.

Термодат-17E6 имеет развитую систему аварийной и предупредительной сигнализации. Это пять различных типов сигнализации, а также сигнализация об обрыве датчика и неисправности контура регулирования.

Прибор снабжен интерфейсом RS485 для связи с компьютером. Протокол связи Modbus ASCII и Modbus RTU. Уставки температуры и другие параметры прибора могут задаваться и редактироваться с компьютера. Для подключения к компьютеру необходим преобразователь интерфейса USB/RS485 типа CK201. К одному устройству CK201 может быть подключено до 32 приборов. Допустимая длина линии RS485 - до 1200 метров.

Компьютерная программа TermodatNet позволяет организовать автоматический опрос нескольких приборов, наблюдать на экране компьютера графики температур, получать из приборов архивные записи, распечатывать и сохранять данные в различных форматах.

Программный продукт OPC-сервер TermodatOPC дает возможность любой программе, снабженной интерфейсом OPC-клиент, получать данные от приборов «Термодат», имеющих интерфейс RS485 и поддерживающих протокол обмена Modbus-ASCII. В частности, он может использоваться для работы со SCADA системами любых производителей, например, с системами Master SCADA, Intouch, Genesis, TraceMode, iFix и др.

Прибор оборудован архивной памятью для записи графика температуры. Измеренная температура записывается во встроенную Flash память с привязкой к реальному времени и календарю. Период записи от 1 сек до 12 часов. Архив может быть просмотрен непосредственно на приборе в виде графика или передан на компьютер с помощью USB-flash носителя («флешки») или устройств СК201, СК301, СК302.

1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

В таблице 1 описаны основные характеристики и возможности прибора Термодат-17E6.

Таблица 1-Технические характеристики прибора.

Общие карактеристики Количество Полный диапазон измерения по всем каналам, не более Класс точности О,25 Разрешение Типы термопар Компенсация температуры Компенсация и диамерения по темпеская компенсация и диамерение про "С Сопротивления и достключение допротивления и достключение термометров сопротивления и достключение компенсация гомпенсация проводов измерение про "С Сопротивления и достключение допротивления и достключение термометров сопротивления и достключена компенсация опротивления и достключена допротивления допрот
Подключение термометров сопротивления подключение при 0°C (одвигочение других датчиков измерение подключение других датчиков измерение напряжения подключение в Бключение в Бключение в Бключение в Бключение при 0°C (од 4 ма ма со то 10 до 30 ма (с внешним шунтом 2 Ом)
Время измерения по всем каналам, не более 2 канала Для термопар Для термопар Сопротивления 1,2 сек 2,1 сек 2,2 сек 2
Каналам, не более
Класс точности 0,25 1,2 сек 2,1 сек 2,1 сек 2,1 сек Класс точности 0,25 1,2 сек 2,1 сек 2,1 сек 2,2 сек 2,1 сек 2,2 сек 2,3 сек 2,4 cek 2,4
Класс точности Разрешение 0,25 Подключение термопар ТХА (К), ТХК (L), ТЖК (J), ТМКН (T), ТНН (N), ТПП (S), ТПП (R), ТПР (B), ТВР (A-1, A-2, A-3) Компенсация температуры холодного спая Автоматическая компенсация или ручная установка температуры компенсации в диапазоне от 0 до 100°C или отключениа Подключение термометров сопротивления Типы термометров сопротивление при 0°C Рt (α=0,00385°C³), М (α=0,00428°C³), № (α=0,00617°C³), С (W₁₀₀=1,4260), П (α=0,00391°C³) Сопротивление при 0°C 100 Ом или любое в диапазоне 10.150 Ом Компенсация сопротивления подводящих проводов (сопротивление каждого провода - не более 20 Ом) Дзмерительный ток 0.25 мА Подключение других датчиков Измерение напряжения От -10 до 80 мВ Измерение тока Измерение тока От 0 до 40 мА (с внешним шунтом 2 Ом) Измерение тока Измерение тока От 0 до 300 Ом Назначение Применение Включение и выключение регулирования Выходы Включение и выключение регулирования Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный можимутируемый ток (на активной нагрузке) 10 А ~230 В Метод управления мощностью При двухлозиционном регулировании – вкл./выкл. Назначение мощностью Управление нагревателем, управление охладителем
Разрешение 1°°С или 0,1°С (выбирается пользователем) Подключение термопар ТХА (К), ТХК (L), ТЖК (J), ТКНК (T), ТНП (N), ТПП (S), ТПП (R), ТПР (B), ТВР (A-1, A-2, A-3) Компенсация температуры Автоматическая компенсация или ручная установка температуры компенсация от до до 40 мП (α=0,00391°C⁻¹), Ск (сопротивления подводящих проводов (сопротивление каждого провода - не более 20 Ом) Подключение других датчиков Измерение напряжения От -10 до 80 мВ Измерение тока От 0 до 40 мА (с внешним шунтом 2 Ом) Пирометры РК15, РС20 Дискретный вход Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления При ПиД регулировании — широтно-импульсный (ШИМ) мощностью При двухпозиционном регулировании — вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Подключение термопар Типы термопар Типы термопар Типы термопар Компенсация температуры компенсация или ручная установка температуры (№ 10.00391°C⁻¹), Си (№ 10.00391°C⁻¹), Си (№ 10.00391°C⁻¹) (№ 10.00391°C⁻¹), Си (№ 10.00391°C⁻¹) (
тримопар Компенсация температуры компенсация или ручная установка температуры компенсация в диапазоне от 0 до 100°С или отключена Типы термометров сопротивления тиль термометров сопротивления подводящих проводов (сопротивление дизмерительный ток подводящих проводов (сопротивление каждого провода - не более 20 Ом) Подключение других датчиков (измерение тока подводящих потротивления подводящих проводов (сопротивления подводящих проводов (сопротивление каждого провода - не более 20 Ом) Измерение напряжения От -10 до 80 мВ (измерение тока потротивления подводящих потротивления пот 10 до 300 Ом (измерение сопротивления под 0.25 мА (измерение тока потротивления пот 10 до 300 Ом (измерение тока потротивления пот 10 до 300 Ом (измерение под 0.25 мА (измерение тока потротивления пот 10 до 300 Ом (измерение сопротивления пот 10 до 300 Ом (измерение под 0.25 мА (измерение под 0.25 мА (измерение тока потротивления пот 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение кнопки или тумблера под 10 до 300 Ом (измерение каждого пре 10 до 40 Ом (измерение каждого пре 10 до 40 Ом (измере 1
Холодного спая Температуры компенсации в диапазоне от 0 до 100°С или отключенае термометров сопротивления Рt (α=0,00385°С°1), М (α=0,00428°С°1), Ni (α=0,00617°С°1), Си (м100=1,4260), П (α=0,00391°С°1) Сопротивления (м100=1,4260), П (α=0,00391°С°1) Сопротивления подводящих проводов (сопротивление каждого провода - не более 20 Ом) Измерительный ток (сопротивление каждого провода - не более 20 Ом) Измерение тока (сопротивление каждого провода - не более 20 Ом) Измерение тока (сопротивления мирительный ток измерение тока (сопротивление каждого провода - не более 20 Ом) Измерение тока (сопротивление каждого провода - не более 20 Ом) Измерение тока (сопротивление каждого провода - не более 20 Ом) Измерение сопротивления (сопротивление каждого провода - не более 20 Ом) Измерение сопротивления (сопротивление каждого провода - не более 20 Ом) Измерение сопротивления (сопротивление каждого провода - не более 20 Ом) Измерение сопротивления (сопротивление каждого провода - не более 20 Ом) Измерение сопротивления (сопротивление каждого провода - не более 20 Ом) Измерение сопротивления (сопротивление каждого провода - не более 20 Ом) Измерение сопротивления (сопротивление каждого провода - не более 20 Ом) Измерение сопротивления (сопротивление каждого провода - не более 20 Ом) Измерение сопротивления (сопротивления (сопротивления (сопротивления каждого провода - не более 20 Ом) Измерение сопротивления (сопротивления каждого провода - не более 20 Ом) Измерение сопротивления (сопротивления каждого провода - не более 20 Ом) Измерение сопротивления (сопротивления каждого провода - не более 20 Ом) От 10 до 300 Ом Измерение сопротивления (сопротивления (сопр
Подключение термометров сопротивления типы термометров сопротивления (Сопротивления (Маративней (Сопротивления (Маративней (Сопротивней (Сопротивн
термометров сопротивления Сопротивления Сопротивления Сопротивления Сопротивления Сопротивления по 0°С Компенсация сопротивления подводящих проводов измерительный ток О,25 мА Подключение других датчиков Измерение тока Измерение тока Измерение тока Измерение сопротивления Пирометры Включение в Включение и выключение регулирования Применение Включение кнопки или тумблера Выходы Количество Реле Максимальный комутируемый ток (на активной нагрузке) Метод управления Метод управления Применение Применение Применение Применение От 10 до 300 Ом РК15, РС20 Включение и выключение регулирования Подключение кнопки или тумблера Выходы Количество Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления При ПИД регулировании – широтно-импульсный (ШИМ) при двухпозиционном регулировании – вкл./выкл. Управление нагревателем, управление охладителем, аварийная сигнализация Применение промежуточного реле и др.
Сопротивления Регистация сопротивления подводящих проводов (сопротивление каждого провода - не более 20 Ом) Измерительный ток 0,25 мА Подключение других датчиков Измерение напряжения От -10 до 80 мВ Измерение тока От 0 до 40 мА (с внешним шунтом 2 Ом) Измерение сопротивления От 10 до 300 Ом Пирометры РК15, РС20 Дискретный вход Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления мощностью При ПИД регулировании — широтно-импульсный (ШИМ) при двухпозиционном регулировании — вкл./выкл. Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Компенсация сопротивления подводящих проводов (сопротивление каждого провода - не более 20 Ом) Измерительный ток 0,25 мА Подключение других датчиков Измерение напряжения От -10 до 80 мВ Измерение тока От 0 до 40 мА (с внешним шунтом 2 Ом) Измерение сопротивления ОТ 10 до 300 Ом Пирометры РК15, РС20 Дискретный вход Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления При ПИД регулировании — широтно-импульсный (ШИМ) при двухпозиционном регулировании — вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Туправление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
подводящих проводов (сопротивление каждого провода - не более 20 Ом) Измерительный ток 0,25 мА Подключение других датчиков Измерение напряжения От -10 до 80 мВ Измерение тока От 0 до 40 мА (с внешним шунтом 2 Ом) Измерение сопротивления От 10 до 300 Ом Пирометры РК15, РС20 Дискретный вход Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления При ПИД регулировании — широтно-импульсный (ШИМ) мощностью При двухпозиционном регулировании — вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Измерительный ток 0,25 мА Подключение других датчиков Измерение напряжения От -10 до 80 мВ Измерение тока От 0 до 40 мА (с внешним шунтом 2 Ом) Измерение сопротивления От 10 до 300 Ом Пирометры РК15, РС20 Дискретный вход Назначение Подключение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления При ПИД регулировании — широтно-импульсный (ШИМ) при двухпозиционном регулировании — вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Подключение других датчиков Измерение напряжения От -10 до 80 мВ Измерение тока От 0 до 40 мА (с внешним шунтом 2 Ом) Измерение сопротивления Пирометры РК15, РС20 Дискретный вход Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Количество Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления Мощностью Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение пускателя, промежуточного реле и др.
Других датчиков Измерение тока От 0 до 40 мА (с внешним шунтом 2 Ом) Измерение сопротивления От 10 до 300 Ом Пирометры РК15, РС20 Дискретный вход Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления Метод управления Метод управления При ПИД регулировании — широтно-импульсный (ШИМ) мощностью При двухпозиционном регулировании — вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Измерение сопротивления От 10 до 300 Ом Пирометры РК15, РС20 Дискретный вход Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) 10 А ~230 В (на активной нагрузке) Метод управления мощностью При ПИД регулировании – широтно-импульсный (ШИМ) мощностью При двухпозиционном регулировании – вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Дискретный вход Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Два или четыре выхода, тип выходов зависит от модели прибора Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) 10 A ~230 B Метод управления мощностью При ПИД регулировании – широтно-импульсный (ШИМ) при двухпозиционном регулировании – вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Дискретный вход Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Два или четыре выхода, тип выходов зависит от модели прибора Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) 10 A ~230 B Метод управления мощностью При ПИД регулировании – широтно-импульсный (ШИМ) при двухпозиционном регулировании – вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления при ПИД регулировании — широтно-импульсный (ШИМ) мощностью При двухпозиционном регулировании — вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Назначение Включение и выключение регулирования Применение Подключение кнопки или тумблера Выходы Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления При ПИД регулировании — широтно-импульсный (ШИМ) мощностью При двухпозиционном регулировании — вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Применение Подключение кнопки или тумблера Выходы Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления При ПИД регулировании — широтно-импульсный (ШИМ) мощностью При двухпозиционном регулировании — вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления При ПИД регулировании — широтно-импульсный (ШИМ) мощностью При двухпозиционном регулировании — вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Количество Два или четыре выхода, тип выходов зависит от модели прибора Реле Максимальный коммутируемый ток (на активной нагрузке) 10 А ~230 В Метод управления мощностью При ПИД регулировании – широтно-импульсный (ШИМ) При двухпозиционном регулировании – вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Реле Максимальный коммутируемый ток (на активной нагрузке) Метод управления Мощностью При ПИД регулировании — широтно-импульсный (ШИМ) При двухпозиционном регулировании — вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
коммутируемый ток (на активной нагрузке) Метод управления При ПИД регулировании – широтно-импульсный (ШИМ) мощностью При двухпозиционном регулировании – вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
(на активной нагрузке)При ПИД регулировании – широтно-импульсный (ШИМ)Метод управленияПри ПИД регулировании – широтно-импульсный (ШИМ)мощностьюПри двухпозиционном регулировании – вкл./выкл.НазначениеУправление нагревателем, управление охладителем, аварийная сигнализацияПрименениеУправление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Метод управления При ПИД регулировании – широтно-импульсный (ШИМ) При двухпозиционном регулировании – вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
мощностью При двухпозиционном регулировании – вкл./выкл. Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Назначение Управление нагревателем, управление охладителем, аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
аварийная сигнализация Применение Управление нагрузкой до 10А, включение пускателя, промежуточного реле и др.
Применение Управление нагрузкой до 10A, включение пускателя, промежуточного реле и др.
промежуточного реле и др.
LINGUSUCTONULIE I KLIVOTUOU CUTUATI LINGUS LAVOTO ROLLO IMPUTE CULTUMBRICUMBRICUMBRICA
Транзисторные Выходной сигнал 1220 В, ток до 30 мА, импульсный или цифр. сигнал выходы Метод управления При ПИД регулировании:
мощностью - Широтно-импульсный (ШИМ);
- широтно-импульсный (шили), - Метод равномерно-распределённых сетевых периодов (Р
- Метод равномерно-распределенных сетевых периодов (РК
силовых блоков типа ФИУ или МБТ
При двухпозиционном регулировании - вкл./выкл.
Назначение
управление нагревателем, управление охладителем
Применение - Подключение силовых блоков СБ, ФИУ или МБТ
Симисторные выходы Максимальный ток 1A, ~230 B
Метод управления При ПИД регулировании: Широтно-импульсный (ШИМ) или
мощностью метод равномерно-распределённых сетевых периодов (РСГ
При двухпозиционном регулировании – вкл./выкл.
Назначение Управление нагревателем, управление охладителем, аварийная сигнализация
Применение Управление нагрузкой до 1А, включение пускателя, управле
внешними тиристорами или симистором

	Особенности	Наличие детектора «0», коммутация происходит при прохождении фазы через ноль		
Аналоговые выходы	Выходной сигнал	Постоянный ток 020мА, сопротивление нагрузки до 500 Ом		
(зависит от	Назначение	- Ток пропорционален измеренной величине		
модели)	Пазпачение	- ток пропорционален измеренной величине (режим трансляции)		
moodra,		- Ток пропорционален выводимой мощности		
		(режим управления нагревом или охлаждением)		
	Применение	Подключение устройств с токовым сигналом на входе		
Дополнительны				
Реле	Количество	Один		
,	Максимальный			
(отсутствует в	коммутируемый ток (на	10A, ~230		
модели с	активной нагрузке)	<u> </u>		
аналоговыми	Применение	Общий выход для всех каналов. Управление аварийной		
выходами)	FOLITO DO TIVOL I	сигнализацией		
Регулирование 3 аконы	- ПИД закон			
регулирования	- Пид закон - Двухпозиционный закон (вкл.	/BHKII on/off)		
Особенности	- Регулирование по заданной г			
	- Функция автонастройки ПИД			
		аксимальной и минимальной мощности		
	- Режим управления мощность			
Применение	Управление нагревателем либ	о охладителем		
Типы шагов		аданной скоростью до заданной температуры		
программы	- Выдержка заданной температуры в течение заданного времени			
	- Стоп (выключение регулиров			
	- Переход на другую программ			
A	Поддержание постоянной мо	щности		
Аварийная сигна	_			
Режимы работы	- Превышение заданной температуры			
	- Снижение температуры ниже заданной - Перегрев выше уставки регулирования на заданную величину			
	- глерегрев выше уставки регулирования на заданную величину - Снижение температуры ниже уставки на заданную величину			
		регулирования- Поддержание постоянной мощности		
Функции	- Функция блокировки сигнализации при включении прибора			
, .	- Функция слокировки сигнализации при включении приосра - Функция подавления «дребезга» сигнализации, фильтр до четырёх минут			
	- Функция оповещения о завершении программы, шага программы			
Сервисные фун				
		отивления и короткого замыкания термометра сопротивления		
	тости (целостности) контура регу			
	ия доступа к параметрам настрой	КИ		
Цифровая фильтра				
	авления мощностью нагревателя	A		
	программного регулирования			
возможность введе	ения поправки к измеренной темі	пературе		
Архив и компью	терный интерфейс	ANA A Ch. OCh (converse or converse)		
	терный интерфейс Архивная память	4M, 4 Gb, 8Gb (зависит от модели)		
Архив и компью Архив	терный интерфейс Архивная память Просмотр архива	На дисплее прибора в виде графика или на компьютере		
Архив и компью	терный интерфейс Архивная память Просмотр архива Тип интерфейса	На дисплее прибора в виде графика или на компьютере RS485		
Архив и компью Архив	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек		
Архив и компью Архив	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный		
Архив и компью Архив Интерфейс	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU		
Архив и компью Архив Интерфейс USB-порт	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол Применение	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU Подключение USB-Flash носителя для скачивания архива		
Архив и компью Архив	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU		
Архив и компью Архив Интерфейс USB-порт	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол Применение Ток потребления USB-flash	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU Подключение USB-Flash носителя для скачивания архива не более 50 мА		
Архив и компью Архив Интерфейс USB-порт	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол Применение Ток потребления USB-flash носителя	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU Подключение USB-Flash носителя для скачивания архива не более 50 мА		
Архив и компью Архив Интерфейс USB-порт	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол Применение Ток потребления USB-flash носителя Максимальный объем USB-flas	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU Подключение USB-Flash носителя для скачивания архива не более 50 мА		
Архив и компью Архив Интерфейс USB-порт	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол Применение Ток потребления USB-flash носителя Максимальный объем USB-flash	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU Подключение USB-Flash носителя для скачивания архива не более 50 мА		
Архив и компью Архив Интерфейс USB-порт (при наличии)	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол Применение Ток потребления USB-flash носителя Максимальный объем USB-flash носителя Файловая система USB-flash	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU Подключение USB-Flash носителя для скачивания архива не более 50 мА		
Архив и компью Архив Интерфейс USB-порт (при наличии)	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол Применение Ток потребления USB-flash носителя Максимальный объем USB-flash носителя Файловая система USB-flash носителя	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU Подключение USB-Flash носителя для скачивания архива не более 50 мА 132 Gb FAT32 нет		
Архив и компью Архив Интерфейс USB-порт (при наличии) Питание Номинальное напр	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол Применение Ток потребления USB-flash носителя Максимальный объем USB-flash носителя Файловая система USB-flash носителя Наличие предохранителя	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU Подключение USB-Flash носителя для скачивания архива не более 50 мА 132 Gb FAT32 нет ~230B , 50 Гц, (опционально -24B)		
Архив и компью Архив Интерфейс USB-порт (при наличии)	терный интерфейс Архивная память Просмотр архива Тип интерфейса Скорость обмена Особенности Протокол Применение Ток потребления USB-flash носителя Максимальный объем USB-flash носителя Файловая система USB-flash носителя Наличие предохранителя	На дисплее прибора в виде графика или на компьютере RS485 9600115200 бит/сек Изолированный Modbus ASCII, Modbus RTU Подключение USB-Flash носителя для скачивания архива не более 50 мА 132 Gb FAT32 нет		

Общая информация				
Индикаторы	Графический жидкокрі			
Исполнение, масса и	Корпус металлический или комбинированный- металл- пластик.			
размеры	Прибор	Лицевая панель	Габаритный размер	Монтажный вырез
	17E6//(F)	96x96	96x96x95	92x92
	17Е6/ /ІР67пп	103x103	103x103x95	92x92
	17Е6/F/ ІР67пп	120x103	120x103x115	109x92
	Масса – не более 1,2	КГ	•	
Технические условия	ТУ 4218-004-12023213	3-2009		
Сертификация	Российской Федераци www.termodat.ru).	Приборы «Термодат» внесены в Государственный реестр средств измерений Российской Федерации (подробная информация о сертификатах размещена на сайте		
Метрология		Поверка приборов «Термодат» должна осуществляться в соответствии с действующе методикой поверки (методика поверки размещена на сайте www.termodat.ru).		
Степень защиты	IP20 - до установки в щит; IP54 – со стороны передней панели после установки в щит; IP67 – со стороны передней панели после установки в щит для моделей Термодат-17E6//IP67пп, Термодат-17E6//F/IP67пп			
Условия эксплуатации	Рабочий диапазон от минус 10 до плюс 45 °C, влажность от 0 до 80%, без конденсаци влаги			
Модели				
17E6/24YB/24P/1P/485	/4M(4Gb,8Gb)/(F)/(IP67пп)	релейный выхо	од, 1 дискретный вход	е, 1 дополнительный д, интерфейс RS485, степень защиты передне
17E6/24УВ/24С/1Р/485/4М(4Gb,8Gb)/(F)/(IP67пп)		дополнительнь интерфейс RS4	ьных входа, 24 симі ый релейный выход, 485, архив 4М(4 ГБ,8 ней панели IP67)	
17E6/24УВ/24Т/1Р/485/4М(4Gb,8Gb)/(F)/(IP67пп)		24 универсалі 1 дополнителы интерфейс RS	ьных входа, 24 тран ный релейный выход	ізисторных выхода, ц, 1 дискретный вход, ГБ), (USB-порт), (степен
Прибор с возможносты	о подключения блока ана	алоговых выходо	В	
17E6/4УB/4P/2RS485/4M(4Gb,8Gb)/(F)/(IP67пп)		интерфейс RS4 блока аналогов		: RS485 (подключение 4M(4 ГБ,8ГБ), (USB-пор

^{*-} наличие функций, указанных в скобках, зависит от модели.

2 ОСНОВНОЙ РЕЖИМ РАБОТЫ

Установите Термодат-17Е6 и включите его. После короткой процедуры самотестирования прибор готов к работе. Перед вами основной режим работы прибора. В этом режиме прибор отображает либо график измеренного значения, либо основную информацию в буквенно-цифровом формате. Как выбрать режим индикации описывается ниже. На рисунке 1 приведен пример режима индикации «**Текст**».

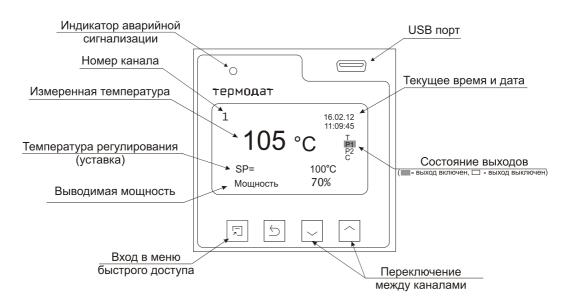
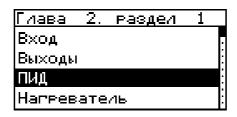



Рисунок 1. Режим индикации «Текст»

Если датчик не подключен или неисправен, вместо значения температуры на экран выводится слово «ОБРЫВ». Если регулирование выключено, то значение уставки не выводится. Если регулирование приостановлено, в строчке «тип шага» выводится слово «пауза».

2.1 ПРАВИЛА НАСТРОЙКИ ПРИБОРА

Параметры настройки прибора сгруппированы в разделы, а разделы объединены в главы. В верхней строке над главным меню отображается номер главы и раздела.

Простое нажатие на кнопку □ открывает меню быстрого доступа. В меню быстрого доступа можно поменять режим индикации и включить регулирование. Долгое нажатие на кнопку □ (около 5 секунд) открывает режим настройки прибора.

Назначение кнопок в режиме настройки.

В таблице 2 описаны назначение кнопок в режиме настройки прибора.

Таблица 2 – Назначение кнопок прибора.

	Вход в режим настройки, перебор параметров
5	Выход из раздела, главы
$ abla$ или Δ	Выделение пунктов, выбор значений параметров

Выход из режима настройки – одновременное нажатие кнопок 🗅 и ๖.

При входе в большинство пунктов меню, необходимо выбрать номер канала, для которого будут осуществляться дальнейшие настройки. Для этого нажимайте кнопки ∇ или Δ . Выберите значение «все» для того, чтобы настроить все каналы одинаково.

2.2 МЕНЮ БЫСТРОГО ДОСТУПА

В меню быстрого доступа находятся часто используемые команды для удобства управления процессом регулирования. Нажмите кнопку 🗅. Перед вами меню из 5 строчек:

Запуск программ Регулирование Общий пуск Общий стоп Основной экран

В меню **«Запуск программ»** выполняется запуск, приостановка и остановка программ регулирования.

В меню «**Основной экран**» выбирается режим индикации. Доступно 4 режима: «**Один канал**», «**Самописец**», «**Все каналы**», «**Значение крупно**».

Режим «Один канал» описан выше, в разделе «Основной режим работы».

В режиме «Самописец» на дисплее отображается график по одному каналу.

На рисунке 2 представлен режим индикации «График».

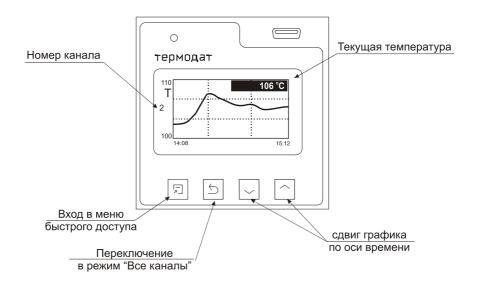


Рисунок 2. Режим индикации «График»

Чтобы переключить канал необходимо перейти в режим индикации «**Все каналы**» и выбрать нужный канал кнопками ∇ и Δ . Затем вновь нажать \mathfrak{S} .

На рисунке 3 представлен режим «**Все каналы**», на экране отображаются текущие значения параметров на всех каналах одновременно.

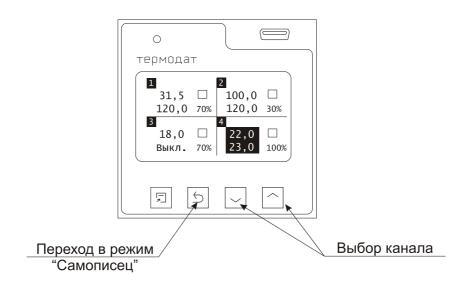


Рисунок 3. Режим индикации «Все каналы»

В режиме **«Значение крупно»** измеренное значение отображается более крупными символами, чем в режиме **«Один канал»**. Значение выводимой мощности на экран не выводится.

«Общий пуск». Выбор этого пункта приводит к запуску регулирования на всех регулирующих каналах.

«Общий стоп». Выбор этого пункта приводит к прекращению регулирования на всех регулирующих каналах.

2.3 КАК ВКЛЮЧИТЬ РЕГУЛИРОВАНИЕ

Нажмите кнопку 🗅.

При использовании прибора как программного регулятора, в пункте «Запуск программ» выберите номер канала, затем нужную программу и номер начального шага программы.

Нажмите ҉ В меню быстрого доступа выберите параметр «Регулирование» и присвойте ему значение «да». Включится регулирование по выбранной программе. Выбирайте значение «Пауза», чтобы приостановить программу регулирования.

При использовании прибора в режиме регулирования «**по уставке**» выберите номер канала, задайте уставку регулирования **SP** и скорость изменения уставки V.

Вернитесь в меню быстрого доступа, включите регулирование, назначив параметру «Регулирование» значение «Да».

2.4 КАК СОЗДАТЬ ПРОГРАММУ РЕГУЛИРОВАНИЯ

Термодат-17E6 осуществляет регулирование температуры по заранее заданной программе. Программа состоит из набора шагов, выполняемых последовательно один за другим. Прибор хранит в памяти 80 программ регулирования, по 10 шагов каждая. Программа может содержать участки роста, снижения и поддержания температуры. Для получения более длинных программ можно объединять несколько программ в одну с помощью типа шага «переход».

Так как прибор многоканальный, существует особый режим <u>связанного</u> <u>регулирования</u> каналов. В этом режиме на всех каналах запускается одна выбранная вами программа. Шаги программы каналы проходят синхронно, причем для различных каналов могут быть заданы различные уставки и скорости их достижения. Изменяется также вид редактора программ. Подробнее об этом читайте в главе «Связанное программное регулирование».

- **1.**Нажмите и удерживайте кнопку 🗋. Выберите пункт «Редактор программ».
- 2. Выберите номер программы. Установите номер шага 1.
- 3. Выберите тип шага программы и установите его параметры.
- **4**.Последовательно установите параметры для всех шагов программы. Программа должна заканчиваться типом шага «**СТОП**» или «**ПЕРЕХОД**».
- **5.** Нажмите кнопку つ. На экране отобразится график процесса регулирования, полученный после составления программы. Чтобы вернуться в режим редактирования шагов, нажмите кнопку □.

В таблице 3 описаны типы шагов программы регулирования.

Таблица 3 – Описание типов шагов программы регулирования.

Тип шага	Параметры	Описание
Нагрев	V	- скорость, ^о С/час, (время, мин)
Увеличение	SP	- конечное значение температуры, °С
температуры до	Переход*	Вручную/Трасч= SP/Тизм=SP
заданного значения с заданной скоростью (за определенное время	Частные Да/Нет*	Выбор частных ПИД коэффициентов и ограничение мощности для данного шага
Охлаждение	V	- скорость, °С/час, (время, мин)
Уменьшение	SP	- конечное значение температуры, °С
температуры до заданного значения с	Переход*	Вручную/Трасч= SP/Тизм=SP. Условие перехода на следующий шаг
заданного значения с заданной скоростью (за определенное время)	Частные Да/Нет*	Выбор частных ПИД коэффициентов и ограничение мощности для данного шага
Нагрев/	V	- скорость, °С/час, (время, мин)
Охлаждение	SP	- конечное значение температуры, °С
Изменение температуры	Переход*	Вручную/Трасч= SP/Тизм=SP. Условие перехода на следующий шаг
до заданного значения с заданной скоростью (за определенное время)	Частные Да/Нет*	Выбор частных ПИД коэффициентов и ограничение мощности для данного шага
Выдержка	Время	- время выдержки, мин
Поддержание заданной	SP	- конечное значение температуры, °С
температуры в течение	Переход*	Авто/Вручную. Условие перехода на следующий шаг
заданного времени	Частные Да/Нет*	Выбор частных ПИД коэффициентов и ограничение мощности для данного шага
P-const	Р	-значение мощности, %
Поддержание заданной	SP	-значение температуры,°С
мощности, до заданной температуры	Переход*	Авто/Вручную. Условие перехода на следующий шаг
Переход	Номер программы	Переход на заданную программу
Стоп	-	Остановка программы

* В «Параметрах шага программы» параметр «включен» - «да» (см. пункт меню 2.7на странице 16 данного руководства)

Параметры шага программы настраиваются в разделе 2.7 настоящего руководства по эксплуатации.

Таблица 4 – Настройка коэффициентов.

Частные	Параметры	Значение	Комментарии
Па	P	от 0,0% до 100,0%	Ограничение максимальной и минимальной выводимой
Да			мощности
	К _р	от 0.1°C до 3000°C	Пропорциональный коэффициент
	K _i	от 1 до 9999 сек.	Интегральный коэффициент
		Нет	Интегральная составляющая ПИД закона не используется
	K _d	от 0 до 999.9 сек.	Дифференциальный коэффициент
Нет	-	-	Не используется

Приведем пример создания программы.

Рисунок 4 –График режима термообработки

На рисунке 4 изображен график режима термообработки. Количество шагов программы – 4.

Первый шаг — **Нагрев** до 100° С за 20 мин., т.е. со скоростью 240° С/ч. В качестве начальной температуры используется фактическая температура объекта.

Второй шаг — **Выдержка** 100° С в течение 2,5 часов, т.е. 150 мин.

Третий шаг — **Охлаждение** от 100° С до 30° С за 3,5 часа, т.е. со скоростью 20° С/ч Четвертый шаг — Стоп — остановка программы.

3 НАСТРОЙКА ПРИБОРА 3.1 КОНФИГУРАЦИЯ

Вход 1.1

В первом разделе данной главы для каждого канала задается тип используемого датчика. Например, если подключена термопара хромель-копель, выберите «ХК(L)».

В главном меню выберите пункт «Входы» и настройте датчики согласно таблице 4.

Таблица 4 – Вход (выбор датчика).

Обозначение датчика	комментарии	Диапазон измерения
Термопары		
XA (K)	ТХА (К) хромель/алюмель	-2701372°C
XK (L)	ТХК (L) хромель/копель	-200800°C
ПП (S)	ТПП (S) платина-10%родий/платина	-501768°C
жк (Ј)	ТЖК (J) железо/константан	-2101200°C
MK (T)	ТМК (Т) медь/константан	-270400°C
ПП (R)	ТПП (R) платина-13%родий/платина	-501768°C
ПР (В)	ТПР(В) платина-30%родий/платина-6%родий	6001820°C
HH (N)	ТНН (N) нихросил/нисил	-2701300°C
BP-A1	ТВР (А-1) вольфрам-рений/вольфрам-рений	02500°C
BP-A2	ТВР (А-2) вольфрам-рений/вольфрам-рений	01800°C
BP-A3	ТВР (А-3) вольфрам-рений/вольфрам-рений	01800°C
TXK (E)	ТХК (Е) никель-хром/медь-никель (хромель/константан)	-2701000°C
	опротивление выбранного датчика при 0°C)	
Pt	(-,)	-200500°C
M	Медный M (α=0,00428 °C ⁻¹)	-180200°C
п	Платиновый П (α=0,00391°C ⁻¹) редко используется	-200500°C
Cu	Медный Cu (W ₁₀₀ =1,4260) редко используется	-50200°C
Н	Никелевый H (α=0,00617 °C ⁻¹)	-60180°C
R (Ом)	Измерение сопротивления	10300 Ом
Масштабируемые датчик		
Линейный	Подключение датчика с токовым выходом или с выходом по напряжению. Линейное масштабирование измеренной величины	040 мА (с шунтом 2 Ом) -1080 мВ
Квадратичный	Подключение датчика с токовым выходом или с выходом по напряжению. Масштабирование измеренной величины с извлечением квадратного корня	040 мА (с шунтом 2 Ом) -1080 мВ
Коренной	Подключение датчика с токовым выходом или с выходом по напряжению. Масштабирование измеренной величины с возведением в квадрат	040 мА (с шунтом 2 Ом) -1080 мВ
Пирометры	1 14	
PK-15	Пирометр марки «РК-15»	01500°C
PC-20	Пирометр марки «РС-20»	01950°C

Примечание

Верхний диапазон измерения платиновых термометров сопротивления указан для датчиков с сопротивлением при 0°C равным 100 Ом и сопротивлении подводящих проводов по 20 Ом. При меньших сопротивлениях верхний диапазон измерения будет выше.

Выходы 1.2

В этом разделе необходимо выбрать назначение выходов для каждого канала. Дополнительный выход настраивается отдельно. На каждый выход можно назначить управление нагревателем, охладителем, сигнализацию хода программ либо аварийную сигнализацию. В последнем случае выход будет управлять сигнализацией в соответствии с настройками для возможной аварии, которые были заданы в профиле аварийной сигнализации. Текущее состояние каждого выхода (кроме аналогового) отображается на передней панели. Если выход включен — он будет выделен.

В таблице 5 представлено описание параметров настройки выхода.

Таблица 5 – Настройка выхода.

Значения	Комментарии
Не используется	Выход не используется
ПИД нагрев	Выход управляет нагревателем по ПИД закону
ПИД охлаждение	Выход управляет охладителем по ПИД закону
Двухпозиционный нагрев	Выход управляет нагревателем по двухпозиционному закону
Двухпозиционное охлаждение	Выход управляет охладителем по двухпозиционному закону
Сигнализация	Выход управляет сигнализацией по настройкам профиля аварийной сигнализации
Таймер	На выход подаётся сигнал «время истекло» таймера

Если выход не используется, рекомендуем его отключить — выбрать значение «**He используется**».

3.2 РЕГУЛИРОВАНИЕ

Термодат-17E6 может регулировать температуру при помощи двухпозиционного или ПИД закона регулирования.

Наиболее простой закон регулирования температуры - двухпозиционный. На нагреватель подается полная мощность до достижения уставки, после чего подача мощности прекращается. Несмотря на это, разогретый нагреватель продолжает отдавать тепло и температура объекта какое-то время продолжает нарастать, что приводит к перегреву. При последующем остывании объекта, по достижении уставки, на нагреватель вновь подается полная мощность. Нагреватель сначала разогревает себя, затем окружающие области объекта, и, таким образом, охлаждение будет продолжаться до тех пор, пока волна тепла не достигнет датчика температуры. Следовательно, реальная температура может оказаться значительно ниже заданного значения. Таким образом, при двухпозиционном законе регулирования возможны значительные колебания температуры около заданного значения.

Повысить точность регулирования можно, применяя пропорционально-интегрально-дифференциальный закон регулирования (ПИД закон).

ПИД предполагает уменьшение мощности, подаваемой на нагреватель, по мере приближения температуры объекта к заданной температуре. Кроме того, в установившемся режиме регулирования по ПИД закону прибор определяет величину тепловой мощности, необходимую для компенсации тепловых потерь и поддержания заданной температуры.

В таблице 6 представлено описание группы параметров настройки ПИД закона регулирования.

ПИД 2.1

Таблица 6 – Настройка ПИД – закона регулирования.

Параметр	Значение	Комментарии
К _р	От 0.1°C до 3000°C	Пропорциональный коэффициент
Ki	От 1 сек. до 9999 сек.	Интегральный коэффициент
	Нет	Интегральная составляющая ПИД закона не используется
K _d	От 0 до 999.9 сек.	Дифференциальный коэффициент
Р	От 0,0% до 100,0%	Ограничение максимальной и минимальной выводимой
		мощности
Обр. датчика	От 0,0% до 100,0%	Мощность, выводимая при обрыве датчика

Для работы ПИД закона регулирования необходимо задать три коэффициента — пропорциональный, интегральный и дифференциальный. Вы можете задать эти коэффициенты вручную или прибор может определить их в автоматическом режиме.

Автонастройка ПИД

2.2

- 1. Войдите в раздел «Автонастройка ПИД», выберите номер канала.
- **2.** Задайте уставку регулирования, при которой Вы собираетесь эксплуатировать печь.
 - 3. Убедитесь, что температура в печи ниже уставки не менее чем на 10°С.
 - **4.** Выберите параметр **Старт** и нажмите кнопку ∇ или Δ .

Прибор начнет автоматическую настройку ПИД коэффициентов. Режим настройки на все это время будет заблокирован. Время автонастройки зависит от инерционности печи и может занять до 100 минут.

Если в процессе настройки произошел сбой (например, прибор был обесточен), то высвечивается сообщение об ошибке.

При успешном завершении автонастройки ПИД коэффициентов новые значения коэффициентов заносятся в память прибора.

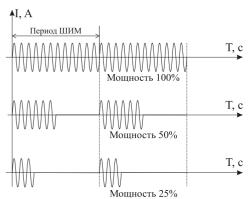
Если автоматическая настройка не дает желаемого качества регулирования, либо прибор прекращает ее из-за слишком большого времени настройки, ПИД коэффициенты следует задать вручную (смотри на сайте www.termodat.ru статью «Методы нахождения ПИД коэффициентов»).

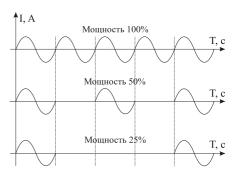
Двухпозиционный закон

2.3

При двухпозиционном регулировании установите величину гистерезиса и, при необходимости, минимальное время между включениями выхода нагревателя или охладителя. Гистерезис необходим, чтобы предотвратить слишком частое включение реле. Реле включено, пока температура не достигнет значения уставки (при работе с нагревателем). При достижении уставки реле выключается. Повторное включение происходит после снижения температуры ниже уставки на величину гистерезиса. Гистерезис задается в градусах. Обычно значение гистерезиса равно 1...10 градусам.

«Время работы выхода» является дополнительным параметром и используется для того, чтобы не допускать слишком частые включения электромагнитного пускателя. Например, зададим «время работы выхода» равное 5 минутам. Если температура в электропечи понизится, прибор включит пускатель. Пускатель останется включенным на время не менее 5 минут (даже если печь перегрелась). После выключения пускателя он не включит-

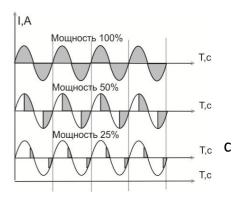

Метод управления 2.4


При ПИД регулировании необходимо выбрать метод управления мощностью нагревателя или охладителя.

ШИМ–широтно-импульсная модуляция. Это единственный метод, доступный для релейных выходов («Р»).

При использовании метода широтно-импульсной модуляции (ШИМ) нагреватель включается на долю периода ШИМ. Метод может быть реализован на всех типах выходов: реле, транзисторном и симисторном. При использовании пускателей, для продления срока их службы, период ШИМ следует выбрать большим, сотни секунд. Для тиристорных силовых блоков или мощных симисторов, которым частые переключения не вредят, период ШИМ можно задать несколько секунд.

При методе равномерно распределенных рабочих сетевых периодов (РСП) ток через нагреватель периодически включается на один или несколько сетевых периодов. Мощность нагревателя испытывает меньшие колебания во времени, чем при использовании ШИМ. Этот метод очень хорош в лабораторных условиях при малых мощностях нагревателя. Не используйте метод при мощностях более 5 кВт. Недопустимо использование



метода РСП при индуктивной нагрузке. Метод РСП используется для симисторных и транзисторных выходов, не используйте для релейных выходов во избежание быстрого износа контактов реле.

Фазоимпульсное управление (ФИУ) позволяет плавно изменять мощность на

нагревателе. Метод реализуется только на транзисторном выходе. При этом по транзисторному выходу в цифровом виде передается требуемая мощность, а фазоимпульсное управление реализуется внешними блоками ФИУ или МБТ. Тиристоры открываются с регулируемой фазовой задержкой от 0 до 180° каждый сетевой полупериод. Метод хорошо использовать для работы с нагревателями малой тепловой инерцией. Фазоимпульсное управление часто используют для работы с понижающими

трансформаторами с низкоомной нагрузкой во вторичной обмотке.

Ф-2 — метод ФИУ, только для снятых с производства силовых блоков ФИУ (как правило, выпущенных до 2010 года), оставлен для совместимости.

Ручное управление 2.5

При входе в этот раздел, вы управляете мощностью сами.

В этом режиме можно наблюдать как при изменении мощности, изменяется измеряемая температура.

Требуемое значение мощности устанавливается кнопками ∇ и Δ .

При ПИД регулировании мощность задается в процентах, при двухпозиционном регулировании нагреватель либо включен, либо выключен (да/нет).

Выход из этого раздела возвращает режим автоматического регулирования.

Ожидание каналов

2.6

Этот раздел доступен только в режиме регулирования «по программе». Здесь можно задать количество первых каналов устройства, по которым нужно осуществить синхронный переход на следующий шаг программы. Допустим, вы выберете 2 канала и запустите на них 2 различные программы. Программа на первом канале готова перейти на второй шаг (выполнилось условие перехода), а программа на втором канале еще не завершила первый шаг (время шага еще не истекло, либо условие перехода пока не выполняется). В этом случае программа на первом канале не переходит на второй шаг, ожидая программу на втором канале. И только когда на втором канале программа будет готова перейти на второй шаг, тогда переход будет осуществлен одновременно на обоих каналах.

При необходимости одновременного перехода на следующий шаг программы, воспользуйтесь режимом **«связанное программное регулирование»**.

Параметры шага программы

2.7

В таблице 7 представлено описание настройки параметров шага программы.

Таблица 7 – Настройка параметров шага программы.

Параметр	Значение	Комментарии
Переход	Да, Нет	Условия перехода на следующий шаг программы: Тизм=SP, Вручную
Частные, Мах Р	Да, Нет	Использовать уникальные параметры для выбранного шага программы: ПИД коэффициенты, максимальная мощность
ПИД-коэффиц.	Да, Нет	В пункте «Частные, Мах Р» задавать ПИД коэффициенты или нет

В разделе «Редактор программ» устанавливаются основные параметры шагов

программы. Условия перехода с одного шага на другой всегда Трсч=SP, т.е. прибор в каждый момент отработки программы рассчитывает температуру и принимает ее за значение уставки. В данном случае, измеренная температура может отличаться от расчетной на некоторую величину. Если

Вам необходимо перейти на следующий шаг программы строго по достижению заданной температуры, необходимо использовать условие перехода на следующий шаг программы Тизм=SP. Возможно также осуществлять переход от шага к шагу программы по нажатию кнопки оператором, т.е. «Вручную».

ПИД коэффициенты и максимальная мощность для выбранного шага, отличные от заданных в разделе «Настройка нагревателя», задаются в пункте «Частные, МахР».

3.3 АВАРИЙНАЯ СИГНАЛИЗАЦИЯ

В этой главе рассматривается настройка аварийной сигнализации.

Одновременно можно выбрать три типа аварии: один — по измеренному значению, второй — по обрыву датчика, третий — по незамкнутости контура регулирования. Аварийная сигнализация сработает при любом из этих событий.

В таблице 8 представлено описание настройки аварийной сигнализации.

Сигнализация 3.1

Таблица 8 – Настройка аварийной сигнализации.

Параметр	Значение	Комментарии
Тип	Нет	Авария не используется
сигнализации	Допуск (+)	Авария регистрируется, если измеренное значение T выше уставки регулирования SP на величину T_{alarm} т.е. $T>SP+T_{alarm}$
	Максимум	Авария регистрируется, если измеренное значение T выше аварийной уставки T_{alarm} т.е. $T > T_{alarm}$
	Допуск (-)	Авария регистрируется, если измеренное значение T ниже уставки регулирования SP на величину T_{alarm} т.е. $T < SP - T_{alarm}$
	Минимум	Авария регистрируется, если измеренное значение T ниже аварийной уставки T_{alarm} т.е. $T < T_{alarm}$
	Диапазон	Авария регистрируется, если измеренное значение T выходит за пределы зоны около уставки регулирования SP . Ширина зоны определяется величиной аварийной уставки T_{alarm} , т.е. $T>SP+T_{alarm}$ или T
Уставка сигнализации	От -999,9 до 3000°C	Значение уставки сигнализации T_{alarm}
Δ	От 0,1 до 25,4°C	Гистерезис переключения аварийного выхода

Аварийные сигнализации на 2, 3 и 4 каналы настраиваются аналогично.

Дополнительная сигнализация

3.2

В таблице 9 представлено описание настройки дополнительной аварийной сигнализации.

Таблица 9 – Настройка дополнительной аварийной сигнализации.

Параметр	Значение	Комментарии
Блокирована	Да	Аварийная сигнализация блокируется, если при включении
Блокировка аварии по		- прибора температура сразу оказывается в аварийной зоне.
температуре при	Нет	Сигнализация сработает при повторном попадании в зону аварии
включении прибора	1161	Сигнализация срасстает при повторном попадании в зону аварии
Фильтр	От 1 до 250 сек	Сигнализация включается, если авария сохраняется в течение
	ОТ ТДО 230 СЕК	заданного времени
Обрыв датчика	Да	Сигнализация обрыва датчика включена
	Нет	Сигнализация обрыва датчика не используется
Обрыв контура	Да	Сигнализация по обрыву контура регулирования включена
	Нет	Сигнализация по обрыву контура регулирования не используется
Выход	Включать	При наступлении аварии выход включается
	Отключать	При наступлении аварии выход отключается

Дополнительные сигнализации на 2, 3 и 4 каналы настраиваются аналогично.

При выборе режима работы аварийного выхода, обратите внимание, что термин

«выход включается» для реле обозначает, что на обмотку реле подаётся напряжение (параметр «**Выход**» равен «**включать**»). Таким образом, при аварии нормально разомкнутые контакты замыкаются, нормально замкнутые

1 Доп.сигнаиивация
Блокирована:Нет
Фильтр: 5сек
Обрыв датчика:Нет
Обрыв контура:Да
Выход:Включать

размыкаются.

При использовании режима выхода «отключать» на обмотку реле сразу после включения прибора подаётся напряжение. При наступлении условия аварии — с катушки реле напряжение снимается. При этом нормально разомкнутые контакты размыкаются, нормально замкнутые замыкаются.

Для того, чтобы из-за случайных ошибок измерения, вызванных, например, электромагнитными помехами, не сработала аварийная сигнализация, можно включить задержку и задать гистерезис аварии. Сигнализация включится, если условие аварии выполняется в течение заданного пользователем времени.

Блокировка сигнализации по измеренному значению действует при первом включении прибора, когда температура может сразу оказаться в аварийной зоне.

Контроль обрыва контура

Эта функция предназначена для контроля неисправности всего контура регулирования — от датчика температуры до нагревателя. Принцип действия основан на измерении теплового отклика контура регулирования. Если прибор выдает команду на увеличение мощности на нагревателе, измеряемая температура должна повышаться. Если ожидаемого повышения температуры нет, значит, контур регулирования нарушен. Причины нарушения контура могут быть разными, например: короткое замыкание в термопаре или удлинительных проводах, датчик температуры не находится в печи, не работает выход прибора, неисправен силовой тиристорный блок или пускатель, обрыв подводящих силовых проводов, неисправен нагреватель. Прибор не может указать причину, но может выдать аварийный сигнал.

Характерное время определения прибором неисправности контура может быть задано пользователем.

Если задан **автоматический** контроль незамкнутости контура, то изменение измеренного значения и время, за которое это изменение должно произойти, берутся автоматически, исходя из настроек регулирования.

Можно задать **ручной** режим контроля незамкнутости контура. Тогда необходимо задать «**Время**» (время отклика), за которое измеренная температура должна измениться на заданную величину «**Δ**» (изменение температуры). Данные величины могут быть найдены экспериментально. Если происходят ложные срабатывания, время следует увеличить.

В таблице 10 представлено описание настройки контроля обрыва контура.

Таблица 10 – Настройка контроля обрыва контура.

Параметр	Значение	Комментарии
Время отклика	От 1 секунды до 100 минут	Время отклика контура регулирования
Изменение температуры (Δ)	От 0,1 до 1000 °C	Величина изменения по температуре

Контроль обрыва контура на 2, 3 и 4 каналы настраиваются аналогично

В основном режиме индикации строка «! Обрыв контура» мигает при срабатывании сигнализации.

Paspeшeниe t° 4.1

В таблице 11 представлено описание настройки разрешения отображения измеренной температуры и уставки регулирования на дисплее прибора.

Таблица 11 – Настройка разрешения.

Параметр	Значение	Комментарии
Разрешение по температуре	1°C	Разрешение 1°C
	0,1°C	Разрешение 0,1°

В этом разделе Вы можете выбрать разрешение отображения измеренной температуры и уставки регулирования на дисплее прибора.

Выбор разрешения влияет только на отображение измеренной температуры. Внутреннее разрешение аналого-цифрового преобразования всегда высокое.

Масштабируемый датчик

4.2

При подключении датчиков с выходом по току или по напряжению прибор может пересчитать значение напряжения на входе в значение измеряемой величины. Пересчёт (масштабирование) производится по линейной, квадратичной зависимости или зависимости с извлечением квадратного корня для входа. Линия задаётся двумя точками.

Датчики с унифицированным токовым выходом 4...20 мА подключаются к входу прибора через шунт 2 Ом.

В параметре «**Индикация**» задается позиция десятичной точки и единицы измерения.

С помощью данной функции прибора можно сконфигурировать прибор как вольтметр, амперметр, расходомер и др. Единицы измерения выбираются из следующих доступных значений: %, A, мA, B, мB, тонн/ч, $m^3/ч$, krc/m^3 , krc/cm^3 , krc/cm

На рисунке 5 представлены графики линейной, квадратичной зависимости или зависимости с извлечением квадратного корня для входа.

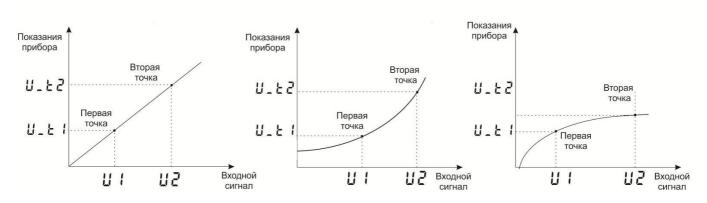


Рисунок 5 —Графики линейной, квадратичной зависимости или зависимости с извлечением квадратного корня для входа

В таблице 12 представлено описание группы параметров настройки прибора при использовании датчиков с масштабируемой индикацией.

Таблица 12 – Настройка масштабирования индикации.

	Параметр	Значение	Комментарии
Первая точка	U	от -10 мВ до80 мВ	напряжение
-	Т	от -999.9°C до 1000°C	температура
Вторая точка	U	От -10 мВ до 80 мВ	напряжение
	Т	от -999.9°C до 1000°C	температура
Уровень обрыва	U	от 0 мВ до 25.5 мВ	напряжение
Индикация	%, А, мА, В, мВ,	0.0001	
	тонн/ч, $M^3/ч$, кгс/ M^3 ,	0.001	
	$\kappa \Gamma c/c M^3$, мм.рт.ст.,	0.01	Единица измерения
	мм.вод.ст, атм, кПа,	0.1	
	Па.	1	

Компенсация температуры холодного спая термопары

4.3

В таблице 13 представлено описание настройки компенсации температуры холодного спая.

Таблица 13 – Настройка компенсации температуры холодного спая.

Параметр	Значение	Комментарии
Тип	Ручная	Ручная компенсация температуры холодного спая
	Авто	Автоматическая установка температуры холодного спая
	Нет	Компенсация отключена
Т (Температура	от -5 °C до 30 °C	Tomponativna vaparijara apar pivijijař vataljanya
холодного спая)	01-3 СД0 30 С	Температура холодного спая при ручной установке

При измерении температуры с помощью термопары прибор автоматически учитывает температуру холодного спая.

Компенсацию температуры холодного спая необходимо отключить на время проведения метрологической поверки. При этом температура холодного спая принимается за 0°C.

В некоторых случаях значение температуры холодного спая требуется задавать вручную, например, когда холодные спаи помещены в среду с известной температурой. Это может быть тающий лед (0°С) или колодка холодных спаев, температура которой контролируется. В этом случае следует выбрать режим ручной установки и задать температуру холодного спая.

Цифровой фильтр 4.4

В таблице 14 представлено описание настройки цифрового фильтра.

Таблица 14 – Настройка цифрового фильтра.

Параметр	Значение	Комментарии
Фильтрация	Отключен	Цифровой фильтр не используется
	1.Сглаживающий	Фильтруются одиночные «выбросы» измеренных значений,
	1.СПаживающий	возникающие в результате электромагнитных наводок
	2.Усредняющий	Текущим значением измеренной величины берется среднее значение
2.3 средняющий		за заданное время (глубина)
Глубина	От 1 до 8	Время фильтрации

Прибор оснащен цифровым фильтром для уменьшения ошибок измерения, вызванных индустриальными помехами. Фильтр снижает скорость отклика прибора на изменение температуры.

В таблице 15 представлено описание настройки поправки к измерениям.

Таблица 15 – Настройка поправки к измерениям.

Параметр	Значение	Комментарии
Коэффициент а	От -99,9°C до 300°C	Сдвиг характеристики в градусах
Коэффициент b	От -0.999 до 0.999	Коэффициент, задающий поправку к наклону
Поэффициент в		градуировочной характеристики

Функция введения поправки к измерениям. Например, по техническим причинам датчик температуры не может быть установлен в заданной точке, а предварительные измерения показали, что в той точке, где датчик установлен, температура отличается на 50° С. Эта функция позволяет вводить поправку вида: $T = Tusm + a + b \cdot Tusm$, где T - undutupyemoe измеренное значение, Tusm - usmependoe прибором значение, a - cdentarrow cdentarrow constraints (например, <math>b - cdentarrow constraints) по умолчанию поправке в 2 градуса на каждые 1000 градусов измеренной температуры). По умолчанию оба коэффициента равны нулю, это означает, что по умолчанию поправка измеренной величины не производится.

Сопротивление при 0°С

Этот раздел нужен в том случае, если Вы подключили термометр сопротивления и не знаете его сопротивление при 0°С. Поместите термометр сопротивления в среду, температура которой измеряется термометром. Изменяя кнопками ∇ и Δ значение сопротивления, добейтесь правильных показаний температуры совпадающих с термометром.

3.5 ТАЙМЕР

Таймер	5.1
--------	-----

Для каждого канала может быть использован свой таймер со своими независимыми настройками. Таймер доступен только в режиме регулирования «по уставке». Таймер назначается на дополнительный выход.

В таблице 16 представлено описание настройки таймера.

Таблица 16 – Настройка таймера.

Параметр	Значение	Комментарии
Тип таймера	Нет	Таймер не используется
	Ручной	Запуск таймера вручную. По окончании отсчета включится соответствующий выход
	Авто	Автоматический запуск таймера по достижению уставки. По окончании отсчета включится выход таймера
	Авто - стоп	Автоматический запуск таймера по достижению уставки. По окончании отсчета включится выход таймера и выключится регулирование
Время	От 0 до 96 часов	Время обратного отсчета таймера
∆ T (порог запуска таймера)	От 0,1 °C до 200 °C	Таймер запустится, не достигая уставки на величину порога $\Delta {f T}$
Выход	Включать	По окончании отсчета выход таймера включается
Выход	Отключать	По окончании отсчета выход выключается

Как работать с таймером

В разделе «Таймер» выберите режим работы таймера. При необходимости настройте остальные параметры. Вернитесь в основной режим работы.

Запуск таймера вручную

В основном режиме работы, нажмите кнопку э для того, чтобы запустить таймер. В верхнем поле экрана отобразится время таймера и начнется отсчет времени. По окончании отсчета сработает выбранный выход.

Для того чтобы выключить таймер и выход таймера, нажмите кнопку Ѕ.

Автоматический запуск таймера

Нажмите кнопку ⊃ для того, чтобы активировать таймер. В верхней строчке экрана появится время обратного отсчета таймера и стрелка вверх/вниз. Стрелкой указывается сверху или снизу должно подойти измеренное значение к уставке регулирования.

На рисунке 6 представлен внешний вид прибора с включенным таймером.

Рисунок 6 – Внешний вид прибора с включенным таймером

Когда температура достигнет уставки, начнется отсчет времени. По окончании отсчета сработает выбранный выход. Для того, чтобы выключить таймер и выход таймера, нажмите кнопку ்.

3.6 ДИСКРЕТНЫЙ ВХОД

Дискретный вход	6.1
-----------------	-----

В таблице 17 представлено описание настройки дискретного входа.

Таблица 17- Настройка дискретного входа.

Значение	Комментарии	
Нет	Дискретный вход не используется	
Кнопка: старт	Запуск регулирования внешней кнопкой	
Кнопка: старт / стоп	Запуск/остановка регулирования внешней кнопкой	
Тумблер: старт / стоп	Запуск/остановка регулирования внешним тумблером	
Тумблер: старт / пауза	Запуск/режим паузы регулирования внешним тумблером	

Дискретный вход используется для подключения внешней кнопки или тумблера. Выберите подключаемое устройство и его назначение.

3.7 АНАЛОГОВЫЙ ВЫХОД

(для прибора с возможностью подключения блока аналоговых выходов)

Аналоговые выходы

7.1

Для настройки аналогового выхода необходимо выбрать диапазон тока, режим работы аналогового выхода и задать температуру (мощность), которым соответствуют крайние точки диапазона тока.

В таблице 18 представлено описание настройки аналоговых выходов.

	Настройка аналоговых выходов.				
Режим	Диапазон	тока	Пределы	Комментарии	
работы					
Измеренное	020 мА	0 мА	от -273°С до	Температура, которой соответствует ток 0 мА	
значение	020 W/A	20 мА	2500°C	Температура, которой соответствует ток 20 мА	
	420 мА	4 мА	от -273°С до	Температура, которой соответствует ток 4 мА	
	420 MA	20 мА	2500°C	Температура, которой соответствует ток 20 мА	
	05 мА	0 мА	от -273°С до	Температура, которой соответствует ток 0 мА	
	U5 MA	5 мА	2500°C	Температура, которой соответствует ток 5 мА	
	200 мА	20 мА	от -273°С до	Температура, которой соответствует ток 20 мА	
	20U MA	0 мА	2500°C	Температура, которой соответствует ток 0 мА	
	00 4 4	20 мА	от -273°С до	Температура, которой соответствует ток 20 мА	
	204 мА	4 мА	2500°C	Температура, которой соответствует ток 4 мА	
	5 O A	5 мА	от -273°С до	Температура, которой соответствует ток 5 мА	
	50 мА	0 мА	2500°C	Температура, которой соответствует ток 0 мА	
Выводимая	0 00 4	0 мА	от 0 до 100 %	Мощность, которой соответствует ток 0 мА	
мощность	020 мА	20 мА	1	Мощность, которой соответствует ток 20 мА	
	4 00 4	4 мА	от 0 до 100 %	Мощность, которой соответствует ток 4 мА	
	420 мА	20 мА	1	Мощность, которой соответствует ток 20 мА	
	05 мА	0 мА	от 0 до 100 %	Мощность, которой соответствует ток 0 мА	
		5 мА		Мощность, которой соответствует ток 5 мА	
	00 0 1	20 мА	от 0 до 100 %	Мощность, которой соответствует ток 20 мА	
	200 мА	0 мА	1	Мощность, которой соответствует ток 0 мА	
	00 4 4	20 мА	от 0 до 100 %	Мощность, которой соответствует ток 20 мА	
	204 мА	4 мА	1	Мощность, которой соответствует ток 4 мА	
	- O A	0 мА	от 0 до 100 %	Мощность, которой соответствует ток 0 мА	
	50 мА	5 мА	1	Мощность, которой соответствует ток 5 мА	
Невязка	0 00 4	0 мА	от -273°С до	Температура, которой соответствует ток 0 мА	
(SP-T)	020 мА	20 мА	2500°C	Температура, которой соответствует ток 20 мА	
(01 1)	4 00 4	4 мА	от -273°С до	Температура, которой соответствует ток 4 мА	
	420 мА	20 мА	2500°C	Температура, которой соответствует ток 20 мА	
	0 5 0	0 мА	от -273°С до	Температура, которой соответствует ток 0 мА	
	05 мА	5 мА	2500°C	Температура, которой соответствует ток 5 мА	
	00 0 4	20 мА	от -273°С до	Температура, которой соответствует ток 20 мА	
	200 мА	0 мА	2500°C	Температура, которой соответствует ток 0 мА	
	00 4 1	20 мА	от -273°С до	Температура, которой соответствует ток 20 мА	
	204 мА	4 MA	2500°C	Температура, которой соответствует ток 4 мА	
	5 O - A	0 мА	от -273°С до	Температура, которой соответствует ток 5 мА	
	50 мА	5 мА	2500°C	Температура, которой соответствует ток 0 мА	

Часы и календарь 8.1

В таблице 19 представлено описание настройки даты и времени.

Таблица 19-Настройка даты и времени.

Параметр	Значение	Комментарии
Год	До 2099	Год
Месяц	Январь- Декабрь	Месяц
День	От 1 до 31	День
Часы	От 0 до 23	Часы
Минуты	От 0 до 59	Минуты
Летнее/зимнее время	Да	Автоматический переход на летнее/зимнее время
-	Нет	Переход на летнее/зимнее время не осуществляется
Подстройка часов	от -511 до 512	Коррекция хода часов (примерно- 300 ед.= 1 секунде за 12 суток)

Установите дату и время для правильной работы архива.

3.9 АРХИВ

Периоды архива	9.1
----------------	-----

Установите периодичность записи в архив. Период записи может быть задан в пределах от 1 секунды до 1 часа. Время непрерывной записи в архив зависит от периода записи и числа используемых каналов

Данные в архиве образуют кольцевой буфер, то есть данные заполняют архив от начала до конца, а после заполнения архива вновь записываются сначала, стирая старые. Таким образом, в приборе все время имеется информация по графику температуры за последний период времени.

Аварийный период устанавливает периодичность записи в архив при аварии любого типа.

Как просмотреть архив на дисплее прибора

Вернитесь в основной режим работы прибора. Убедитесь, что выбран режим «график». Кнопками ∇ и Δ двигайте график по оси времени до нужной даты. Обратите внимание, данные из архива можно только просматривать, изменить их невозможно.

Конфигурация архива 9.2

В этом разделе необходимо задать параметры для записи в архив.

В таблице 20 представлено описание настройки конфигурации архива.

Таблица 20 – Настройка конфигурации архива.

- dormala 20 · race porma nempro year, in aprinous		
Параметр	Комментарии	
Т	Температура	
T,SP	Температура и уставка	
T,SP,P	Температура, уставка и мощность	

USB-flash носитель	9.3

Вставьте в USB-порт USB-flash носитель. Меню для работы с архивом данных появится автоматически.

Внимание! Не следует подключать к прибору через USB-порт активные устройства (например, компьютер, телефон), чтобы избежать поломки прибора или активного устройства.

После скачивания архива в корневом каталоге USB-flash носителя появится папка Termodat. Внутри неё будет находиться папка с именем Termodat — 17E, в ней будет папка с датой, соответствующей времени скачивания архива, где будут храниться данные, скачанные из прибора.

Пример: Полный путь до файла, скачанного 2020.07.13 г., будет выглядеть –

Termodat / Termodat - 17E/ 2020.07.13 /001.TDA.

В таблице 21 представлено описание настройки скачивания архива на USB-flash носитель.

Таблица 21 — Настройка скачивания архива на USB-flash носитель.

Параметр	Комментарии	
Скачать часть архива	Скачивается архив с указанной даты по указанную дату	
Скачать новый архив	Скачивается архив с даты последнего скачивания	
Скачать весь архив	Скачивается вся накопленная информация	
Тип файла	Тип архивного файла (*.TDA, *.CSV, *.TXT, .TDB)	

3.10 ГРАФИК

В таблице 22 представлено описание настройки отображения графика на экране прибора.

Таблица 22 – Настройка отображения графика на экране прибора.

Параметр	Значение	Комментарии	
Временное окно	от 5 мин до 240 часов	Ширина окна графика по оси даты и времени	
Временной сдвиг	от 5 мин до 240 часов	Временной интервал, на который график сдвигается вправо и	
		влево при нажатии на кнопки ∨ и ∧	
Ось Ү	Авто, Границы	Настройка границ оси Ү: Автоматически или вручную	
Вид	Горизонтальный,	Pur Frachusa	
	Вертикальный	Вид графика	
	Сетка	Нанесение сетки на график	
	Надписи	Нанесение надписей на график	
Возвращение через 15	no.	Автоматическое возвращение просмотра к текущему	
сек	да	значению	
	нет		

Выберите параметры отображения графика на экране прибора.

3.11 СЕТЕВЫЕ НАСТРОЙКИ ПРИБОРА

RS-485/RS-232 11.1

В таблице 23 представлено описание настройки основных параметров интерфейса.

Таблица 23 – Настройка основных параметров интерфейса.

Параметр	Значения	Комментарии
Адрес	От 1 до 255	Сетевой адрес прибора
Скорость	От 9600 до 115200	Скорость обмена информацией по RS485. Задается в бит/сек
Протокол	ASCII	Протокол обмена Modbus ASCII
Modbus	RTU	Протокол обмена Modbus RTU

В таблице 24 представлено описание настройки дополнительных параметров интерфейса.

Таблица 24 – Настройка дополнительных параметров интерфейса.

Параметр	Значения	Комментарии
Данные	8 бит	Размер байта данных
Четность	нет	
	четная	Контроль четности
	нечетная	
Стоповых	1 бит	В кадре 1 стоповый бит
	2 бита	В кадре 2 стоповых бита

3.12 СИГНАЛИЗАЦИЯ ХОДА ПРОГРАММ РЕГУЛИРОВАНИЯ

Сигнализация программы

12.1

В режиме «регулирование по программе» можно настроить сигнализацию хода программы регулирования. Сигнализация хода программы выводится на дополнительный выход прибора.

В таблице 26 представлено описание настройки сигнализации хода программ регулирования.

Таблица 26 – Настройка сигнализации хода программ регулирования.

Значение	Комментарии	
Нет	Сигнализация отключена	
Ход программы	Выход включается на все время хода программы. Если регулирование остановить – выход будет отключен	
Конец шага	В конце каждого шага программы включается выход. На экране прибора появляется информирующее сообщение. По нажатию кнопки Ѣ выход выключается	
Конец программы	По окончанию программы включается выход. По нажатию кнопки Ѣ выход выключается	

3.13 РЕЖИМ РАБОТЫ УСТРОЙСТВА

Режим 13.3

Выберите режим регулирования «по программе» или «по уставке». Соответственно изменятся пункты меню и индикация в основном режиме.

3.14 КОНФИГУРАЦИЯ ДОПОЛНИТЕЛЬНОГО ВЫХОДА

Дополнительный выход

14.1

На дополнительный выход можно настроить общую для всех каналов сигнализацию. В таблице 26 представлено описание настройки конфигурации дополнительного выхода.

Таблица 26 – Настройка дополнительного выхода.

Значение		Комментарии	
Нет		Выход не используется	
Сигнализация	вкл/выкл	Сигнализация об активированной аварии на любом выходе	
Таймер	вкл/выкл	Сигнализация состояния таймера на любом выходе	
Сигнализация программы	вкл/выкл	Сигнализация хода программы	
Выход	вкл/выкл	Выберите включать или выключать выход при срабатывании выбранной сигнализации	

3.15 ВОЗВРАТ К НАСТРОЙКАМ ПО УМОЛЧАНИЮ

Значения по умолчанию

15.1

Здесь возможно установить значения всех параметров прибора в значения по умолчанию.

Если в первой строке на странице настройки выбрано «Заводские», то устанавливаются заводские умолчания (самые распространенные). Если выбрано — «Мой профиль», то устанавливаются умолчания, заданные пользователем через пункт меню «Создать мой профиль».

Установка и проверка правильности установки умолчаний производится нажатием экранных кнопок «*Установить*» и «*Проверить*» соответственно.

3.16 УСТАНОВКА ЯЗЫКА МЕНЮ

Язык 16.1

В таблице 27 представлено описание выбора языка меню прибора.

Таблица 27 – Выбор языка меню прибора.

Выбор языка	Язык:	Русский	Меню на русском языке
		English	Меню на английском языке

3.17 КОНТРАСТ ЖКИ

Контраст ЖКИ	17.1
--------------	------

В таблице 28 представлено описание настройки контрастности индикатора прибора.

Таблица 28 - Настройка контрастности индикатора прибора.

Настройка	Контраст	Pulifion routhoctivitations		
индикатора	индикатора	Выбор контрастности индикатора		

3.18 ОГРАНИЧЕНИЕ ДОСТУПА К ПАРАМЕТРАМ НАСТРОЙКИ

В основном режиме работы, нажмите и удерживайте кнопку $\mathfrak D$ в течение 10 секунд. На индикаторе появится надпись **«Уровень доступа».** Выберите один из трех вариантов с помощью кнопок ∇ или Δ и нажмите $\mathfrak D$:

Уровень доступа = 0 Запрещены любые изменения.

Уровень доступа = **1** Открыто меню быстрого доступа.

Уровень доступа = 2 Доступ не ограничен.

4 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ПРИБОРА 4.1 МОНТАЖ ПРИБОРА

Прибор предназначен для щитового монтажа. Прибор крепится к щиту с помощью двух крепежных скоб, входящих в комплект поставки.

У моделей приборов с защитой по передней панели IP67 перед установкой в щит необходимо проверить целостность уплотнителя, уложенного в паз с внутренней стороны передней панели. Прибор следует крепить к щиту с помощью четырех крепежных скоб, обеспечивая равномерный прижим.

Размеры выреза в щите для монтажа указаны в пункте 7.

Следует обратить внимание на рабочую температуру в шкафу, она не должна превышать 50°C.

При подключении прибора к сети рекомендуем установить автоматический выключатель с током срабатывания 1А.

4.2 ПОДКЛЮЧЕНИЕ ДАТЧИКОВ ТЕМПЕРАТУРЫ

Для обеспечения надежной работы прибора, следует обратить особое внимание на монтаж проводов от датчиков температуры.

- **1.** Провода от датчиков температуры должны иметь хорошую электрическую изоляцию и ни в коем случае не допускать электрических утечек между проводами и на землю и, тем более, попадания фазы на вход прибора.
- **2.** Провода от датчиков должны быть проложены на максимальном удалении от мощных силовых кабелей, во всяком случае, они не должны крепиться к силовым кабелям и не должны быть проложены в одном коробе с силовыми кабелями.
 - **3.** Провода от датчиков должны иметь минимально возможную длину. На рисунке 7 представлена схемы подключения датчиков.

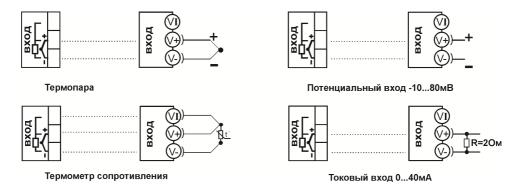


Рисунок 7 – Схемы подключения датчиков

Подключение термопары.

Термопару следует подключать к прибору с помощью удлинительных термопарных проводов. Удлинительные термопарные провода должны быть изготовлены из тех же материалов, что и термопара. Например, одна жила из хромеля, вторая из алюмеля для термопары ХА. Подключать удлинительные провода к термопаре следует с учётом полярности (хромель к хромелю, алюмель к алюмелю для ХА). Подключать термопару или термопарные провода к прибору следует также с учётом полярности. Температура «холодных спаев» в приборе Термодат измеряется на клеммной колодке и автоматически учитывается при вычислении температуры.

Если у Вас возникли сомнения в правильности работы прибора или исправности термопары мы рекомендуем для проверки погрузить термопару в кипящую воду. Показания прибора не должны отличаться от 100 градусов более чем на 1...2 градуса.

Приборы Термодат имеют высокое входное сопротивление, поэтому сопротивление термопарных проводов и их длина не влияют на точность измерения. Однако, чем короче термопарные провода, тем меньше на них электрические наводки.

Во избежание использования неподходящих термопарных проводов или неправильного их подключения рекомендуем использовать термопары с неразъемными проводами нашего производства. Вы можете заказать термопару с любой длиной провода.

Подключение термометра сопротивления.

К прибору может быть подключен платиновый, медный или никелевый термометр сопротивления. Термометр сопротивления подключается по трехпроводной схеме. Все три провода должны находиться в одном кабеле. Провода должны быть медные, сечение не менее 0,5 мм² (допускается 0,35 мм² для коротких линий). Провода должны иметь одинаковую длину и сопротивление. Максимальное сопротивление каждого провода должно быть не более 20 Ом. При соблюдении этих условий сопротивление проводов автоматически учитывается и не влияет на точность измерения температуры.

Подключение датчиков с токовым выходом.

Для подключения датчиков с токовым выходом 0...20мА или 4...20мА необходимо установить шунт 20м. Рекомендуем использовать Шунт Ш2 нашего производства.

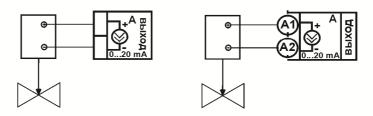
4.3 ПОДКЛЮЧЕНИЕ ИСПОЛНИТЕЛЬНЫХ УСТРОЙСТВ

В приборе могут быть три типа выходов— релейные, транзисторные или симисторные.

Реле, установленное в приборе может коммутировать нагрузку до 10 А при ~230В. Следует помнить, что ресурс работы контактов реле зависит от тока и типа нагрузки. Чем выше индуктивность нагрузки и чем выше ток, тем быстрее изнашиваются контакты реле. Реле можно использовать для включения нагрузки с малой индуктивностью (ТЭН, лампа накаливания) мощностью до 2,3 кВт. Данный режим работы выхода можно применять для коммутации нагрузки как на переменном токе, так и на постоянном токе.

К транзисторному выходу прибора подключаются силовые блоки типа СБ или МБТ. Тиристорные блоки рассчитаны на токи от 10 до 1000 А для коммутации однофазной или трёхфазной нагрузки. Коммутация тиристоров происходит в нуле. Режим управления мощностью задаётся прибором (а не блоком). Блоки могут работать в режиме равномерно распределённых рабочих сетевых периодов или в широтно-импульсном режиме.

Для трёхфазных нагрузок необходимо использовать блоки типа СБЗФ или МБТЗФ.


Симистор, установленный в приборе может коммутировать нагрузку до 1 А при ~230В. Данный режим работы выхода можно использовать для подключения мощного симистора или пары тиристоров. Открытие и закрытие симистора происходит в нуле. Данный режим работы можно применять только для коммутации нагрузки на переменном токе.

На рисунках 8, 9, 10 и 11 представлены схемы подключения исполнительных устройств.

Более подробная информация по выходам приборов «Термодат» представлена в статье «Исполнительные выходы приборов Термодат» на сайте http://www.termodat.ru/information/articles/vihoditermodat/.

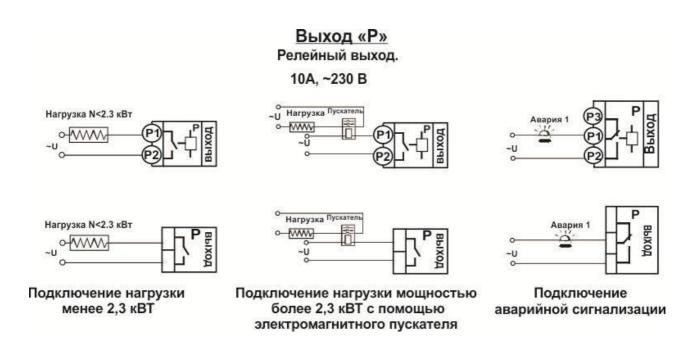
Выход «А»

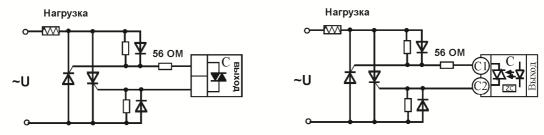
Аналоговый токовый выход. Предназначен для управления исполнительными устройствами с токовым входом 0...5, 5...0, 0...20, 20...0, 4...20, 20...4 мА. RH<500 Ом

Подключение задвижки с электроприводом

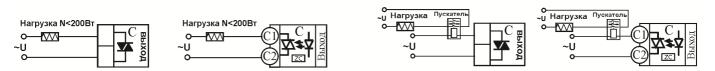
Подключение самописца

Рисунок 8 – Схемы подключения аналогового выхода




Рисунок 9 – Схемы подключения симисторного выхода

Выход «С»

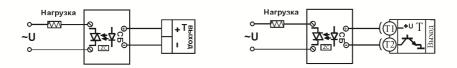

Симисторный выход. Предназначен для управления внешним симистором, тиристорами или нагрузкой до 200Вт.Оптоизолирован. включение симистора происходит в момент прохождения фазы через ноль. Імакс ~ 1 А

Подлючение внешнего симистора

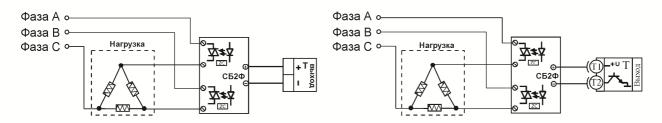
Подключение внешних тиристоров

Подключение нагрузки менее 200 Вт

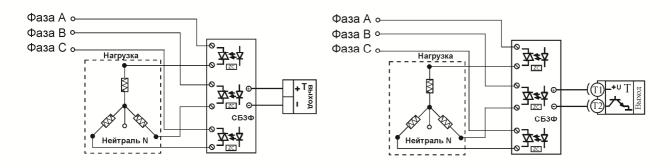
Подключение аварийной сигнализации

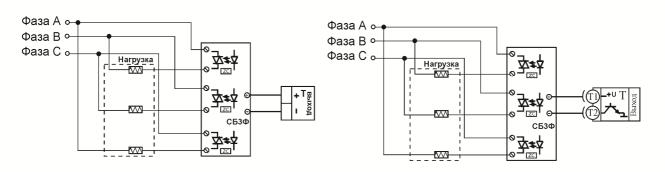

Подключение аварийной сигнализации

Подключение электромагнитного пускателя


Рисунок 10 – Схемы подключения симисторного выхода

Выход «Т»


Транзисторный выход. Предназначен для управления блоками типа СБ, МБТ. U=15B(12-20B,не сбалансированное). Імакс.=30мА


Управление однофазной нагрузкой с помощью блока СБ

Использование двухфазных силовых блоков для управления трехфазной нагрузкой. Схема подключения «Треугольник»

Управление трехфазной нагрузкой .с помощью силовых блоков. Схема подключения «Звезда с нейтралью»

Подключение трехфазной нагрузки в шестипроводной схеме

Рисунок 11 – Схемы подключения транзисторного выхода

4.4 ПОДКЛЮЧЕНИЕ ПРИБОРА

На рисунке 12 и представлена схема подключения прибора.

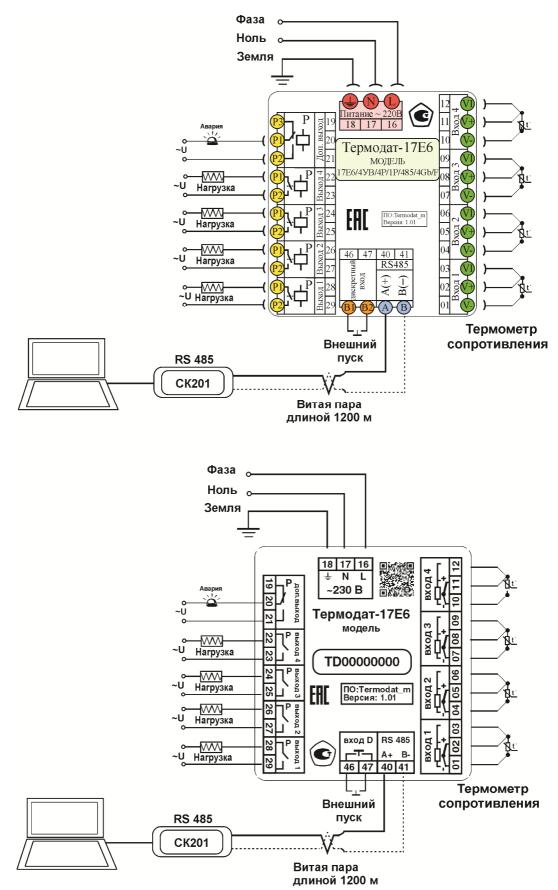


Рисунок 12 – Схема подключения прибора

4.5 ПОДКЛЮЧЕНИЕ ПРИБОРА С БЛОКОМ АНАЛОГОВЫХ ВЫХОДОВ

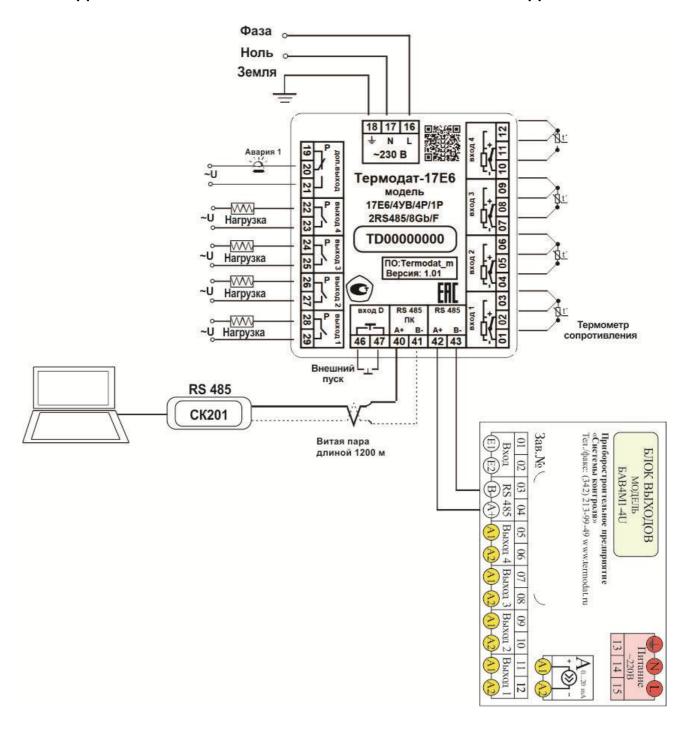


Рисунок 13 – Схема подключения прибора с блоком аналоговых выходов.

5 МЕРЫ БЕЗОПАСНОСТИ

При подготовке прибора к использованию должны быть соблюдены следующие требования:

- место установки прибора должно обеспечивать удобные условия для монтажа, обслуживания и демонтажа;
- любые подключения к прибору следует производить при отключенном питании сети;
- необходимые линии связи следует подсоединять к клеммам прибора согласно схеме подключения;
- при эксплуатации прибора должны быть соблюдены "Правила технической эксплуатации электроустановок потребителей и правила техники безопасности при эксплуатации электроустановок потребителей"
- контактные колодки должны быть защищены от случайных прикосновений к ним во время работы. Контакт ⊕ на задней стенке прибора должен быть заземлен.

6 УСЛОВИЯ ХРАНЕНИЯ, ТРАНСПОРТИРОВАНИЯ И УТИЛИЗАЦИИ

Прибор в упаковочной таре должен храниться в закрытых помещениях при температуре от минус 50 до плюс 50°С и значениях относительной влажности не более 80 % при 25°С.

Прибор может транспортироваться всеми видами крытого наземного транспорта без ограничения расстояний и скорости движения.

Прибор не содержит вредных веществ, драгоценных металлов и иных веществ, требующих специальных мер по утилизации.

7 ГАБАРИТНЫЕ РАЗМЕРЫ ПРИБОРА

На рисунках 14, 15 и 16 представлены габаритные размеры приборов.

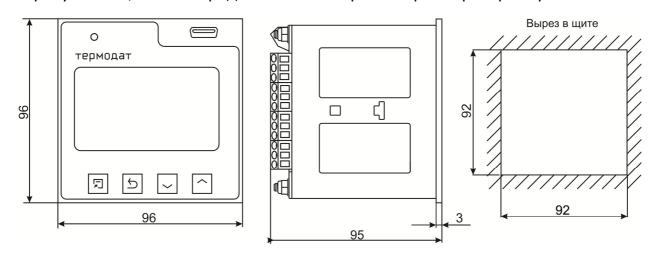


Рисунок 14 — Габаритные размеры прибора Термодат-17E6/..../(F)

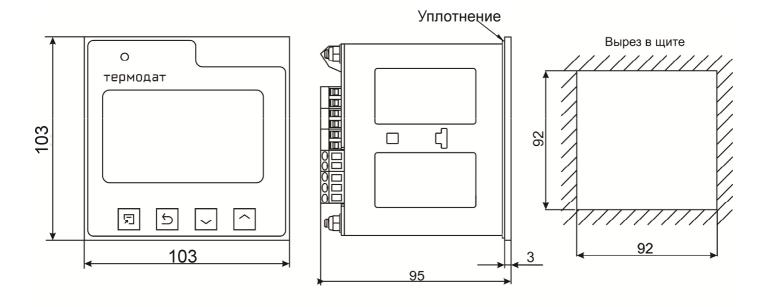


Рисунок 15 – Габаритные размеры прибора Термодат-17Е6/..../ ІР67пп

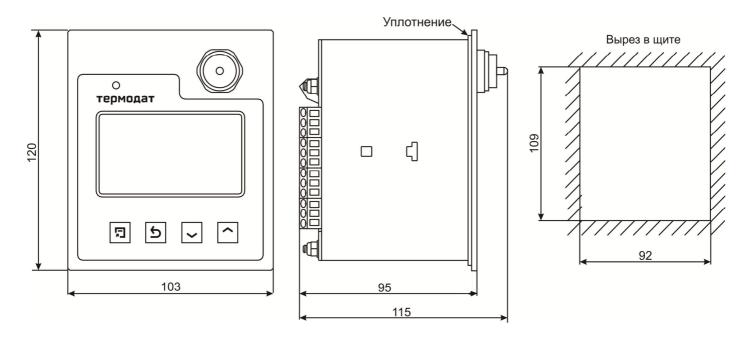


Рисунок 16 – Габаритные размеры прибора Термодат-17Е6/..../F/IP67пп

8 КОНТАКТНАЯ ИНФОРМАЦИЯ

Приборостроительное предприятие «Системы контроля»

Россия, 614031, г. Пермь, ул. Докучаева, 31A многоканальный телефон, факс: (342) 213-99-49 http://www.termodat.ru E-mail: mail@termodat.ru